Running Node and Express on Ubuntu VM

So you just spun up your first Ubuntu Virtual Machine?
No…
Let’s fix that: “Intro to Ubuntu on Azure”

YEAH!
Let’s put it to work!

The Basic Steps to using node on an Azure VM:
1. Open the Port
2. Install Git and Install Updates
3. Install Node and NVM
4. Code and Install Express
5. Run it and check it out!
6. Use forever to keep it alive

1. Open the Port
We’re not talking battleships or submarines we’re talking Infrastructure as a Service.
Visit the landing page for your Ubuntu Virtual Machine:
vmnumberonelandingpage

And select the resource group in the top left corner:
resourcegroup

Resource groups are the way we break down how our VM interacts with the internet, other vms, storage, and public/private networks.

To open the port we need to change our network security group which is represented by the shield. (Underlined in the above screenshot)
Then we’ll select settings -> Inbound security rules
networksecuritygroupsettings

This will allow us to open up our VM to the Public Internet so we can visit it like any other website.

Under ‘Inbound security rules’ SSH is already included:
defaultssh

We’re going to add a new Inbound security rule named ExpressServerPort where we’ll set the Destination port range to 3000 which we’ll see later when starting our server. Here’s the configuration pane for our ExpressServerPort:
destinationport

2. Install Git and Check Updates
Git is fun!

SSH into our Virtual Machine like we did in the VM intro then enter:
$ sudo apt-get install git
sudoaptgetinstallgit

Yay! We have Git

Let’s run our update command just to double check we’re up to date:

$ sudo apt-get update
sudoaptgetupdate

Great let’s move on with Node!

3. Install NVM and Node

First NVM: https://github.com/creationix/nvm

NVM is a version manager for Node you can install using curl:
Enter this command to install it:
$curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.31.1/install.sh | bash

Then source your profile to add it to your commands:
$ source ~/.profile

Then check out the version to make sure it installed:
$ nvm --version

It should look like this:
nvmisntallversion

NVM is installed!
Let’s install a version of Node!
$ nvm install 5.0

Then check our version of Node:
$ node -v
nvminstallfive

Sweeeeeeet

Check out NVMs readme on the github for more commands:
https://github.com/creationix/nvm

With node comes ‘npm’ which allows us to install a whole bunch of node awesomeness. One of the more popular packages is express a minimalist web framework, we’ll install this to start coding away.

4. Code and Install Express

We’ll be following along “Express’s” introduction if you get lost/have more questions about express.
http://expressjs.com/en/starter/installing.html

First let’s create our a directory, cd into it and initialize our app using nom.

$ mkdir myapp
$ cd myapp
$ npm init

After entering npm init we’ll be walked through a configuration step for our app. The only one that matters for now is (index.js) which will be the entry point for our app everything else can be the default for now.

If you were actually going to submit/share this code you’d want to accurately fill out this info.

After the initialization step we’ll add express and list it as a dependency:
$ npm install express --save

Here’s what those steps look like:
mkdirmyapp

Weeee now have express and an app ready for your code!

Lets open nano and put the helloworld sample into index.js

$ sudo nano index.js

sudonanohelloworld

Now lets run our app!
$ node index.js
nodeindexjs

Now that its running lets visit it by entering the IP address and port number into our browser.
In my case the URL is: http://13.88.180.170:3000/
ipaddressandport

Neat!

6. Use forever to keep it alive
Unfortunately, if we close our Terminal/SSH Connection our project will stop running.
To solve this, we use another NPM package called forever.
Here’s the link to the repository with clear instructions.

In short we install it globally:
$ sudo npm install forever -g

Then start it:
$ forever start app.js

And stop it:
$ forever stop app.js

That’s it for now!

Now clone one of your node projects and run them in the cloud!
Happy Hacking!

When the Male Roommates are home alone...
When the Male Roommates are home alone…

Intro to Ubuntu Virtual Machines on Azure

When I search:
Node JS Server Azure, Ubuntu, JavaScript, Mongo, Postgres, Flask, VM
I turn up with all sorts of unhelpful results.
So I dedicated a couple days to creating a couple guides for common Cloud Stacks on Azure VMs to make it as simple as possible to start deploying your code to the cloud.

This is the introduction and at the bottom of this blog post you’ll see other workflows fill in.

So, Here’s a guide to deploying an Ubuntu VM on Azure:
1. Gather Materials
2. Create VM
3. Check VM using SSH

1. Gather Materials
Here’s what you’ll need:
An Azure Account
An SSH Client perhaps putty… or even Bash On Windows?

2. Create VM

Head into the Azure Portal: portal.azure.com

And Select Virtual Machines -> Then ‘Add’
selectVirtualmachines

You’ll then see a page like this:
selectubuntu

Select Ubuntu Server 14.04.

There are lots of configurable deployments available if you feel like exploring.

Then select Create, but make sure the deployment model is Resource Manager as its more future ready then the classic model:
createvm

We’ll then get to the basic configuration tab, fill out the info and pick a User name and Password that you’ll remember because you’ll need it later!

configurationbasics

If you’re not familiar with Resource Groups check out THIS ARTICLE

I’ve named my resource group: ResourceGroupOne

Hit Okay to go to the next configuration pane

Select the Size of your VM. To see all the options select ‘View All’
selectvmsize

We’re going to go with the cheapest option A1 Standard:
SelectAOne

Hit Okay to take us to our final configuration Pane, “Settings”.

settingstwo

There are a number of different settings presented here.

First up is Storage:
This will configure what we want to name the storage account for our vm. I’ve changed mine to ‘resourcegrouponestorage’, but I could have selected any of my previous storage account in the same region, in this case westus.

Second is Network:
We can configure a Virtual Network to allow our virtual machines to connect to other resource on our network by default. We can also change this later. So in this case I’m creating the default virtual network.

Again, I could have selected a previously created Virtual Network Called ‘Databases’ which is in the same region.
virtualnetworkdefault

Third is Extensions:
We won’t add any extensions

Fourth is Monitoring:
Which we’ll disable for simplicity sake, but is a very powerful tool one you start needing to make scaling decisions.

Fifth and finally is Availability:
We won’t use an availability set, until we need to scale out our app.

Here’s what the lower portion of our settings pane looks like:
settingstwoend

And we’ll select OK to finish with our settings. This will take us to the summary page so we can do a one more check on our machine, don’t get to anxious about making mistakes because we can always tear this one down and spin up another if we messed something up!
vmsummary

Hit Okay one last time!

You’ll then be taken to your dashboard where you’ll see a nice loading tile:
loadingdashboard

It’ll take ~5 minutes to spin up and then we’ll be ready to take on the world!

Once ready it’ll look like this:
clickthetile

Click the tile to hit the landing page for our VM:
vmnumberonelandingpage

See that public IP address?
We’ll use that to SSH into our machine.

In my case: 13.88.180.170 !

3. Check VM using SSH

Let’s SSH into our box.

Pull out your preferred SSH client. Here’s bash on Windows and Putty Side by Side:
sshintomachine

Notice ‘Timothy’ Triple underlined?
That’s the User Name we set during basic configuration and is paired with the password that we also set in Azure.

When you connect you might have to accept the ras2key fingerprint. It’ll look like this when using putty. Or it’ll be in the terminal using bash. Type ‘yes’ or Select Yes to continue.
sayyestowarning

Then type in your password and marvel and your creation:
typeinyourpassword

Let’s test our vm by installing updates! Yay Updates!

$ sudo apt-get update
sudoaptgetupdate

Now that you have a VM ready let’s put it to work!

Host a Node Server
Host a Python Flask Server

Pradeep Cruising on National Donut Day
Pradeep Cruising on National Donut Day

Python Flask Windows Development Environment Setup

No more struggles Windows Python development! I’ve found this is the best way to configure your dev environment.
This has made things much easier to get started and less of a headache overall.

We use Virtual Environment so we can test python code in encapsulated environments and to also avoid filling our base Python installation with a bunch of libraries we might use for only one project.

But Virtual Environments can be tricky if you don’t establish a good workflow. I’ll show you how to setup your python environment from Scratch and then do a very simple workflow using Flask.

SETUP
4 Steps:
Install Python
Install Pip
Install VirtualEnv
Install VirtualEnvWrapper-win

Install Python:

First Go to the Python Downloads Site.

As of March 2015 the download you want for a standard windows machine is Windows x86-64 MSI installer (The other download is for servers). Its circled here:

Download

Run the installer!
You’ll come across this page in the installer:

PythonInstaller

You’ll want to scroll down and add it to the path. If you don’t that’s okay. You can add it later.
Adding Python to the PATH will allow you to call if from the command line.

After the installation is complete double check to make sure you see python in your PATH. You can find your path by opening your control panel -> System and Security -> System -> Advanced System Settings -> Environment Variables -> Selecting Path -> Edit ->

Now you’re looking at your Path. Be Careful, if you delete or add to the path accidently you may break other programs.

You need to confirm that C:\Python27; and C:\Python27\Scripts; is part of your path.

If you do not see it in your path you can simply add it at the beginning or end of the variable value box. As you can see in the image below.

AdvancedSettings

Install Pip:

As of Python Version 2.7.9 Pip is installed automatically and will be available in your Scripts folder.

If you install a later version of Python I would recommend installing it according to this helpful stackoverflow post.

Pip is a Package manager for python which we will use to load in modules/libraries into our environments.

An example of one of these libraries is VirtualEnv which will help us keep our environments clean from other Libraries. This sounds really confusing but as you start using it you’ll begin to understand how valuable this encapsulation of modules/libraries can be.

To test that Pip is installed open a command prompt (win+r->’cmd’->Enter) and try ‘pip help’

You should see a list of available commands including install, which we’ll use for the next part:

Install virtualenv:

Now that you have pip installed and a command prompt open installing virtualenv to our root Python installation is as easy as typing ‘pip install virtualenv’
Like so:

pipinstallvirtualenv

Now we have virtualenv installed which will make it possible to create individual environments to test our code in. But managing all these environments can become cumbersome. So we’ll pip install another helpful package…

Install virtualenvwrapper-win:

This is the kit and caboodle of this guide.

Just as before we’ll use pip to install virtualenvwrapper-win. ‘pip install virtualenvwrapper-win’
Like so:

virtualenvwrapper-win

Excellent! Now we have everything we need to start building software using python! Now I’ll show you how buttery smooth it is to use these awesome tools!

USAGE
7 Steps:
Make a Virtual Environment
Connect our project with our Environment
Set Project Directory
Deactivate
Workon
Pip Install
Flask!

Make a Virtual Environemt:

Lets call it HelloWold. All we do in a command prompt is enter ‘mkvirtualenv HelloWold’
This will create a folder with python.exe, pip, and setuptools all ready to go in its own little environment. It will also activate the Virtual Environment which is indicated with the (HelloWold) on the left side of the prompt.

mkvirtualenv

Anything we install now will be specific to this project. And available to the projects we connect to this environment.

Connect our project with our Environment:

Now we want our code to use this environment to install packages and run/test code.

First lets create a directory with the same name as our virtual environment in our preferred development folder. In this case mine is ‘dev’

See here:

mkdir

HelloWold will be the root folder of our first project!

Set Project Directory:

Now to bind our virtualenv with our current working directory we simply enter ‘setprojectdir .’
Like so:

setprojectdir

Now next time we activate this environment we will automatically move into this directory!
Buttery smooth.

Deactivate:

Let say you’re content with the work you’ve contributed to this project and you want to move onto something else in the command line. Simply type ‘deactivate’ to deactivate your environment.
Like so:

deactivate

Notice how the parenthesis disappear.
You don’t have to deactivate your environment. Closing your command prompt will deactivate it for you. As long as the parenthesis are not there you will not be affecting your environment. But you will be able to impact your root python installation.

Workon:

Now you’ve got some work to do. Open up the command prompt and type ‘workon HelloWold’ to activate the environment and move into your root project folder.

Like so:

workon

Pretty sweet! Lets get working.

Pip Install:

To use flask we need to install the packages and to do that we can use pip to install it into our HelloWold virtual environment.

Make sure (HelloWold) is to the left of your prompt and enter ‘pip install flask’
Like so:

pipinstallflask

This will bring in all the tools required to write your first web server!

Flask:

Now that you have flask installed in your virtual environment you can start coding!

Open up your favorite text editor and create a new file called hello.py and save it in your HelloWold directory.

I’ve simply taken the sample code from Flask’s website to create a very basic ‘Hello World!’ server.

I’ve named the file hello.py.

Once the code is in place I can start the server using ‘python hello.py’ this will run the python instance from your virtual environment that has flask.

See here:

webserver

You can now navigate with your browser to http://127.0.0.1:5000/ and see your new site!

Sweet. You have everything you need to start working through tutorials on Flask without worrying about gunking up your Python installations.

Let me know if you have any questions! Happy Developing!

Art Deco From Afar
Art Deco From Afar